Ref No:



COURSE PLAN

Academic Year 2019 – 20

| Program:             | B E – MECHANICAL     |
|----------------------|----------------------|
| Semester :           | Ι                    |
| Course Code:         | 18EGDL15             |
| Course Title:        | ENGINEERING GRAPHICS |
| Credit / L-T-P:      | 4 / 2-0-2            |
| Total Contact Hours: | 60                   |
| Course Plan Author:  | Mr. PARAMESHA .M     |

## Academic Evaluation and Monitoring Cell

#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA Phone / Fax :+91 80 23721477 -STD- 080 23721315 Web:www.skit.org.in E-mail:skit1princi@gmail.com/principal@skit.org.in

## Table of Contents

| 18EGDL15: Engineering Graphics                    | 3  |
|---------------------------------------------------|----|
| A. COURSE INFORMATION.                            | 3  |
| 1. Course Overview                                |    |
| 2. Course Content                                 |    |
| 3. Course Material                                | 4  |
| 4. Course Prerequisites                           | 4  |
| 5. Content for Placement, Profession, HE and GATE | 4  |
| B. OBE PARAMETERS                                 | 5  |
| 1. Course Outcomes                                | 5  |
| 2. Course Applications                            | 5  |
| 4. Mapping Justification                          | 5  |
| 4. Articulation Matrix                            | 6  |
| 5. Curricular Gap and Content                     | 6  |
| 6. Content Beyond Syllabus                        | 7  |
| C. COURSE ASSESSMENT                              | 7  |
| 1. Course Coverage                                | 7  |
| 2. Continuous Internal Assessment (CIA)           | 7  |
| D1. TEACHING PLAN - 1                             | 7  |
| Module - 1                                        | 7  |
| Module – 2                                        | 9  |
| E1. CIA EXAM – 1                                  | 11 |
| a. Model Question Paper - 1                       | 11 |
| b. Assignment -1                                  | 11 |
| D2. TEACHING PLAN - 2                             | 15 |
| Module – 3                                        | 15 |
| Module – 4                                        | 15 |
| E2. CIA EXAM – 2                                  | 18 |
| a. Model Question Paper - 2                       |    |
| b. Assignment – 2                                 |    |
| E3. CIA EXAM – 3                                  | 20 |
| a. Model Question Paper - 3                       | 20 |
| b. Assignment – 3                                 |    |
| F. EXAM PREPARATION                               | 21 |
| 1. University Model Ouestion Paper                |    |
| 2. SEE Important Questions                        |    |
|                                                   |    |

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

# **18EGDL15: Engineering Graphics**

## A. COURSE INFORMATION

### **1. Course Overview**

| Degree:              | BE                   | Program:       | ME          |
|----------------------|----------------------|----------------|-------------|
| Year / Semester :    | 1/I                  | Academic Year: | 2019-2020   |
| Course Title:        | Engineering Graphics | Course Code:   | 18EGDL15    |
| Credit / L-T-P:      | 3/2-2-0              | SEE Duration:  | 180 Minutes |
| Total Contact Hours: | 60                   | SEE Marks:     | 60Marks     |

| CIA Marks:          | 40             | Assignment | 1 / Module |
|---------------------|----------------|------------|------------|
| Course Plan Author: | Paramesha M    | Sign       | Dt:        |
| Checked By:         | Chandraiah M T | Sign       | Dt:        |

### 2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

| Modu | Module Content                                                           | Teaching | Module Concepts | Bloom  |
|------|--------------------------------------------------------------------------|----------|-----------------|--------|
| le   |                                                                          | Hours    |                 | S      |
|      |                                                                          |          |                 | Level  |
| 1    | Introduction, Drawing Instruments and their uses, BIS                    | 5        | -Drawing basics | Under  |
|      | conventions, Lettering, Dimensioning and free hand                       |          |                 | standL |
|      | practicing. Computer screen, layout of the software,                     |          |                 | 2      |
|      | standard tool-bar/menus and description of most commonly                 |          |                 |        |
|      | used tool bars, navigational tools. Co-ordinate system                   |          |                 |        |
|      | .Reference planes. HP, VP, RPP & LPP. of 2D/3D                           |          |                 |        |
|      | environment. Selection of drawing size and scale.                        |          |                 |        |
|      | Commands and creation of Lines, Co-ordinate points, axes,                |          |                 |        |
|      | ploy-lines, square, rectangle, polygons, splines, circles,               |          |                 |        |
|      | ellipse, text, move, copy, off-set, mirror, rotate, trim,                |          |                 |        |
|      | extend, break, chamfer, fillet, curves, constraints viz.                 |          |                 |        |
|      | tangency, parallelism, inclination and perpendicularity                  |          |                 |        |
| 2    | Introduction, Definitions - Planes of projection, reference              | 12       | -Orthographic   | Apply  |
|      | line and conventions employed, Projections of points in all              |          | Projections of  | L3,    |
|      | the four Quadrants, Projections of straight lines (located in            |          | points lines    |        |
|      | First quadrant/first angle only), True and apparent lengths,             |          | planes          |        |
|      | True and apparent inclinations to reference planes (No                   |          | -               |        |
|      | application problems).Orthographic Projections of Plane                  |          |                 |        |
|      | Surfaces.                                                                |          |                 |        |
|      | Projections of plane surfaces-triangle, square, rectangle, rhombus,      |          |                 |        |
|      | pentagon, hexagon and circle, planes in different positions by change of |          |                 |        |
|      | position method only(No problems on punched plates and composite         |          |                 |        |
| 3    | Introduction Definitions – Projections of right regular                  | 16       | -Orthographic   | Apply  |
|      | tetrahedron hey-hedron (cube) prisms pyramids cylinders                  | 10       | Projections of  | L3.    |
|      | and cones in different positions (No problems on octahedron              |          | solid           | - ,    |
|      | and combination solid                                                    |          | sond            |        |
| 4    | Introduction Section planes Sections Section views                       | 12       | Development     | Annly  |
|      | Sectional                                                                | 12       | -Development    | L3.    |
|      | views Apparent shapes and True shapes of Sections of right               |          |                 | ,      |
|      | regular prisms pyramids cylinders and cones resting with                 |          |                 |        |
|      | base on hp only Development of their frustums and                        |          |                 |        |
|      | truncations                                                              |          |                 |        |
| 5    | Introduction, Isometric scale, Isometric projection of simple            | 15       | - Isometric     | Apply  |
|      | plane figures. Isometric projection of tetrahedron.                      | 10       | projection      | L3,    |
|      | hexahedron (cube), right regular prisms. pyramids. cylinders.            |          | r               |        |
|      | cones, spheres, cut spheres and combination of two solids.               |          |                 |        |
|      | conversion of given isometric/pictorial views to orthographic            |          |                 |        |
|      | views of simple objects                                                  |          |                 |        |

#### 3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C). 1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

| Modul   | Details                                                                                   | Chapters in | Available |
|---------|-------------------------------------------------------------------------------------------|-------------|-----------|
| e       |                                                                                           | Book        |           |
| Α       | Text books (Title, Authors, Edition, Publisher, Year.)                                    |             |           |
| 1,2,3,4 | Engineering Drawing-N.D Bhatt & V.M Panchal, 48 <sup>th</sup> edition 2005-charotar       | 1,2,3,,4,5  | In Lib,In |
| ,5      | Publishing House                                                                          | 1,2,3,4,5   | Dept      |
|         | Engineering Graphics-K R Gopalakrishna, 32 <sup>nd</sup> edition, 2005- Subash Publishers |             |           |
|         | Computer Aided Engineering Drawing-Dr. M H Annaiah, Dr. C N Chandrappa and                | 1,2,3,4,5   |           |
|         | Dr. B Sudheer Premkumar, 5 <sup>th</sup> edition, New age International Publishers        |             |           |
| В       | Reference books (Title, Authors, Edition, Publisher, Year.)                               |             |           |
| 1,2,3,4 | Computer Aided Engineering Drawing- s. Trymbaka murty- I K International                  | 1,2,3,4,5   | In Lib    |
| ,5      | Publishing House Pvt.Ltd                                                                  | 3,,4,5      |           |
|         | Engineering Drawing- N S Parthasarathy & Vela Murali, Oxford University Press             |             |           |
|         | 2015                                                                                      |             |           |
| С       | Concept Videos or Simulation for Understanding                                            |             |           |
| C1      | https://www.youtube.com/watch?v=n5Ba6OtDpTU-38.24 Mins                                    |             |           |
| C2      | https://www.youtube.com/watch?v=Ss-xD1fZm40 -9:04 Mins                                    |             |           |
| c3      | https://www.youtube.com/watch?v=aYfj2xgK3AE -11:18                                        |             |           |
| c4      | https://www.youtube.com/watchv=hljpRonTkIs&list=PLIhUrsYr8y                               |             |           |
|         | HwdB96ft6c0Uwc4SDCLuG1v -7:17 Mins                                                        |             |           |
| c5      | https://www.youtube.com/watchv=Vo9LC9d7FQA&list=PLIhUrsYr                                 |             |           |
|         | 8yHxVky7bfrnbRcdXcHjT_K83 -1hr:14.mins                                                    |             |           |
| D       | Software Tools for Design                                                                 |             |           |
| 1       | Solidedge ST4                                                                             |             |           |
| E       | Recent Developments for Research                                                          |             |           |
| 1       |                                                                                           |             |           |
|         |                                                                                           |             |           |
| F       | Others (Web, Video, Simulation, Notes etc.)                                               |             |           |
| 1       | https://www.youtube.com/watch?v=WG6H2pISUzQ&list=PLIhUrsYr8yHwDUr                         |             |           |
|         | VYmUNYkEeZgZTvoIfS-27:47 Mins                                                             |             |           |
|         |                                                                                           |             |           |

#### 4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

| SNo | Course | Course Name | Module / Topic / Description | Sem | Remarks | Blooms |
|-----|--------|-------------|------------------------------|-----|---------|--------|
|     | Code   |             |                              |     |         | Level  |
| 1   |        |             |                              |     | -       | L2     |

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

#### **5.** Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

| Modu | Topic / Description | Area         | Remarks         | Blooms     |
|------|---------------------|--------------|-----------------|------------|
| les  |                     |              |                 | Level      |
| 1    | Auto Cadd           | Higher Study | To design model | Understand |
|      |                     |              |                 | L3         |
|      |                     |              |                 |            |

### **B. OBE PARAMETERS**

#### **1. Course Outcomes**

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

| #         | Cos                              | Teach. | Concept     | Instr      | Assessment | Blooms'     |
|-----------|----------------------------------|--------|-------------|------------|------------|-------------|
|           | students should be able to       | Hours  |             | Method     | Method     | Level       |
| 18EGDL15. | Understand the field of          | 5      | Drawing     | Chalk      | Assignment | L2          |
| 1         | Engineering Drawings as per      |        | basics      | and        | Unit Test  | Understand  |
|           | BIS Conventions and Graphical    |        | Reference   |            |            |             |
|           | Languages. Use the Knowledge     |        | planes      | Duciaata   |            |             |
|           | of Engineering Geometry and      |        | and         | Projecto   |            |             |
|           | solid edge soft ware             |        | board       | r          |            |             |
|           | C C                              |        | LCD         |            |            |             |
|           |                                  |        | Projector   |            |            |             |
| 18EGDL15. | Create Engineering drawings on   | 12     | Orthographi | Chalk      | Assignment | L3          |
| 2         | Orthographic Views.              |        | c           | and        | Unit Test  | Apply       |
|           |                                  |        | Projections |            |            |             |
|           |                                  |        |             | Drojecto   |            |             |
|           |                                  |        |             | r          |            |             |
| 18FGDI 15 | Use the Knowledge of             | 16     | Projection  | ı<br>Chalk | Assignment | 13          |
| 3         | orthographic Projections of      | 10     | of Solida   | and        | Unit Test  | Apply       |
|           | simple solids                    |        | of Solids   | board      | enit fest  | 11 2        |
|           | simple sonds.                    |        |             | LCD        |            |             |
|           |                                  |        |             | Projecto   |            |             |
|           |                                  |        |             | r          |            |             |
| 18EGDL15. | Draw the development of Lateral  | 12     | Developmen  | Chalk      | Assignment | L3          |
| 4         | surface of simple Solids.        |        | t           | and        | Unit Test  | Apply       |
|           | L                                |        |             | board      |            |             |
|           |                                  |        |             |            |            |             |
|           |                                  |        |             | Projecto   |            |             |
| 10505145  |                                  |        |             | r          |            |             |
| 18EGDL15. | Draw the isometric Projection of | 15     | Isometric   | Chalk      | Assignment | L3<br>Apply |
| 5         | Simple plans and solids          |        | projection  | board      | Unit lest  | Аррту       |
|           |                                  |        |             | LCD        |            |             |
|           |                                  |        |             | Projecto   |            |             |
|           |                                  |        |             | r          |            |             |

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

#### **2.** Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to . . .

| Modu | Application Area                                                                         | CO  | Level |
|------|------------------------------------------------------------------------------------------|-----|-------|
| les  | Compiled from Module Applications.                                                       |     |       |
| 1    | To expose the Conventions Followed in Preparation of Engg Drawings.                      | CO1 | L2    |
| 2    | Its used for construction and fabrication purposes To determine its true length and true | CO2 | L2    |
|      | inclinations                                                                             |     |       |
| 3    | its helps streamline the manufacturing process                                           | CO3 | L2    |
| 4    | Powerful communication media during the discussion of a new product design               | CO4 | L2    |
| 5    | Convert pictorial and and isometric views of simple objects to orthographic views        | CO5 | L2    |

### 4. Mapping Justification

| Mapping Justification Ma | Aapping |
|--------------------------|---------|
|--------------------------|---------|

|     |     |                                                                    | Level |
|-----|-----|--------------------------------------------------------------------|-------|
| СО  | PO  | •                                                                  | -     |
| CO1 | PO1 | understand the basic knowledge of Engineering drawing and software | L2    |
| CO1 | PO5 | Understand the tool like solid edge                                | L2    |
| CO2 | PO1 | understand the basic knowledge of points lines and planes          | L2    |
| CO2 | PO2 | Analyzation is require to solve the problem in different position  | L3    |
| CO2 | PO5 | Understand the tool like solid edge                                | L2    |
| CO3 | PO1 | understand the basic knowledge of different types of solid part    | L2    |
| CO3 | PO2 | analyzation is require to solve the problem in different stages    | L3    |
| CO3 | PO5 | Understand the tool like solid edge                                | L2    |
| CO4 | PO1 | understand the basic knowledge of section of solids                | L2    |
| CO4 | PO2 | Analyzation is require to solve the problem in different stages    | L3    |
| CO4 | PO5 | Understand the tool like solid edge                                | L2    |
| CO5 | PO1 | understand the knowledge of isometric view                         | L2    |
| CO5 | PO2 | Analyzation is require to solve the combination of solids          | L3    |
| CO5 | PO5 | Understand the tool like solid edge                                | L2    |

Note: Write justification for each CO-PO mapping.

### 4. Articulation Matrix

#### (CO – PO MAPPING)

| -       | -        | Course Outcomes   |     |    |    |     | Progr | am ( | Outco | omes |     |     |    |    |     |            |    |     |
|---------|----------|-------------------|-----|----|----|-----|-------|------|-------|------|-----|-----|----|----|-----|------------|----|-----|
| Modules | #        | COs               | PO1 | PO | PO | PO4 | PO5   | PO   | PO7   | PO8  | PO9 | PO1 | PO | PO | PSO | PS         | PS | Lev |
|         |          |                   |     | 2  | 3  |     |       | 6    |       |      |     | 0   | 11 | 12 | 1   | <b>O</b> 2 | 03 | el  |
| 1       | 18EGDL15 | Understand the    | 3   | -  | -  | -   | 3     | -    | -     | -    | -   | -   | -  | -  | -   | -          | -  | L2  |
|         |          | Knowledge of      |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | Engineering       |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | Geometry and      |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | solid edge soft   |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | ware              |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
| 2       | 18EGD15  | CreateEngineeri   | 3   | 2  | -  | -   | 3     | -    | -     | -    | -   | -   | -  | -  | -   | 1          | -  | L3  |
|         |          | ng drawings on    |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | Orthographic      |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | Views. (points    |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | line Planes)      |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
| 3       | 18EGDL15 | Use the           | 3   | 2  | -  | -   | 3     | -    | -     | -    | -   | -   | -  | -  | -   | -          | -  | L3  |
|         |          | Knowledge of      |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | orthographic      |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | Projections of    |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | simple solids.    |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
| 4       | 18EGDL15 | Draw the          | 3   | 2  | -  | -   | 3     | -    | -     | -    | -   | -   | -  | -  | -   | -          | -  | L3  |
|         |          | development of    |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | Lateral surface   |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | of simple Solids. |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
| 5       | 18EGDL15 | Draw the          | 3   | 2  | -  | -   | 3     | -    | -     | I    | I   | -   | -  | -  | -   | -          | -  | L3  |
|         |          | isometric         |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | Projection of     |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | Simple plans      |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |
|         |          | and solids        |     |    |    |     |       |      |       |      |     |     |    |    |     |            |    |     |

### **5.** Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

| SNo | Gap Topic | Actions Planned    | Schedule Planned            | Resources Person | PO Mapping |
|-----|-----------|--------------------|-----------------------------|------------------|------------|
| 1   | Auto Cadd | Presentation by    | 4 <sup>th</sup> week / date |                  | L3         |
|     |           | training institute |                             |                  |            |
|     |           | people             |                             |                  |            |

Note: Write Gap topics from A.4 and add others also.

### 6. Content Beyond Syllabus

| Modu | Gap Topic | Area         | Actions Planned    | Schedule Planned            | Resources | PO Mapping |
|------|-----------|--------------|--------------------|-----------------------------|-----------|------------|
| les  |           |              |                    |                             | Person    |            |
| 3    | Auto Cadd | Placement,   | Presentation by    | 3 <sup>rd</sup> week / date |           | L3         |
|      |           | GATE, Higher | training institute |                             |           |            |
|      |           | Study,       | people             |                             |           |            |

Note: Anything not covered above is included here.

## C. COURSE ASSESSMENT

#### **1.** Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

| Mod   | Title                                      | Teaching |       | No. c | of quest | ion in I | Exam  |     | CO  | Levels |
|-------|--------------------------------------------|----------|-------|-------|----------|----------|-------|-----|-----|--------|
| ule # |                                            | Hours    | CIA-1 | CIA-2 | -        | Asg      | Extra | SEE |     |        |
|       |                                            |          |       |       |          |          | Asg   |     |     |        |
| 1     | Introduction, Drawing Instruments and      | 5        | -     | -     | -        | -        | -     | -   | CO1 | L2     |
|       | their uses                                 |          |       |       |          |          |       |     |     |        |
| 2     | introduction, Definitions - Planes of      | 12       | 3     | 3     | -        | 2        | 1     | 2   | CO2 | L3     |
|       | projection,                                |          |       |       |          |          |       |     |     |        |
| 3     | introduction, Definitions – Projections of | 16       | 1     | 1     | -        | 2        | 1     | 2   | CO3 | L3     |
|       | right regular tetrahedron, hexahedron      |          |       |       |          |          |       |     |     |        |
|       | (cube), prisms, pyramids, cylinders and    |          |       |       |          |          |       |     |     |        |
|       | cones in different positions               |          |       |       |          |          |       |     |     |        |
| 4     | introduction, Section planes, Sections,    | 12       | 2     | 2     | -        | 2        | 1     | 2   | CO4 | L4     |
|       | Section views, Sectional views,            |          |       |       |          |          |       |     |     |        |
| 5     | Introduction, Isometric scale, Isometric   | 15       | 1     | 1     | -        | 2        | 1     | 2   | CO5 | L3     |
|       | projection of simple plane                 |          |       |       |          |          |       |     |     |        |
| -     | Total                                      | 60       | 7     | 7     | -        | 8        | 4     | 8   | -   | -      |

#### 2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

| Evaluation                     | Weightage in Marks | СО                 | Levels |
|--------------------------------|--------------------|--------------------|--------|
| CIA Exam – 1                   | 30                 | CO2, CO3, CO4, CO5 | L3     |
| CIA Exam – 2                   | 30                 | CO2, CO3, CO4, CO5 | L3     |
|                                |                    |                    |        |
| Assignment - 1                 | 10                 | CO2, CO3, CO4, CO5 | L3     |
|                                |                    |                    |        |
| Seminar - 1                    | _                  | _                  | _      |
| Seminar - 2                    | -                  | _                  | -      |
| Seminar - 3                    | _                  | _                  | _      |
|                                |                    |                    |        |
| Other Activities define - Slip |                    |                    |        |
| test                           |                    |                    |        |
| Final CIA Marks                | 40                 | -                  | -      |

## **D1. TEACHING PLAN - 1**

#### Module - 1

| Title: | Divide and Conquer | Appr  | 16 Hrs |
|--------|--------------------|-------|--------|
|        |                    | Time. |        |

| a        | Course Outcomes                                                                                                                                                     | -                 | Blooms    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| -        | The student should be able to.                                                                                                                                      | -                 |           |
| 1        | and Applications.                                                                                                                                                   | 02                | L2,L3     |
| 2        | Create Engineering drawings on Orthographic Views.                                                                                                                  | CO3               | L3        |
|          |                                                                                                                                                                     |                   |           |
| b        | Course Schedule                                                                                                                                                     | -                 | -         |
| Class No | Module Content Covered                                                                                                                                              | CO                | Level     |
| 1        | Introduction, Definitions - Planes of projection, reference line and                                                                                                | C03               | L2,L3     |
|          | conventions employed, Projections of points in all the four Quadrants,                                                                                              |                   |           |
| 2        | projections of straight lines                                                                                                                                       | C02               | L3        |
| 3        | True and apparent lengths.                                                                                                                                          | CO2               | L3        |
| 4        | True and apparent inclinations to reference planes                                                                                                                  | CO2               | L3        |
| 5        | Orthographic Projections of Dana Surfaces                                                                                                                           | CO2               | 13        |
| 6        | projections of plane                                                                                                                                                | <u>CO2</u>        | L3        |
| 0        | surfaces, triangle square                                                                                                                                           | $\frac{CO2}{CO2}$ | L5<br>13  |
| 8        | projections of rectangle                                                                                                                                            | $\frac{CO2}{CO2}$ | <u> </u>  |
| 9        | Projections of rhombus                                                                                                                                              | $\frac{CO2}{CO2}$ | <u> </u>  |
| 10       | Projections of hexagon                                                                                                                                              | CO2               | <u>L3</u> |
| 11       | Projections of circle                                                                                                                                               | CO2               | L3        |
| 12       | planes in different positions by change of position method only.                                                                                                    | CO2               | L3        |
|          |                                                                                                                                                                     |                   |           |
| с        | Application Areas                                                                                                                                                   | CO                | Level     |
| 1        | To expose the Conventions Followed in Preparation of Enng Drawings.                                                                                                 | CO1               | L2        |
| 2        | Used in Understand the Concepts of solid Edge                                                                                                                       | CO2               | L2        |
|          |                                                                                                                                                                     |                   |           |
| d        | Review Questions                                                                                                                                                    | -                 | -         |
| 1        | A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP.                                                                                          | CO2               | L3        |
|          | Draw the projections and name the side view                                                                                                                         |                   |           |
| 2        | Line AB is 75 mm long and it is 30.0 & 40.0 Inclined to Hp & Vp respectively. End<br>A is 12mm above Hp and 10 mm in front of Vp. Draw projections. Line is in 1 st | CO2               | L3        |
|          | quadrant.                                                                                                                                                           |                   |           |
|          | 1                                                                                                                                                                   |                   |           |
| 3        | A point is 35mm below HP, 15mm behind VP and 25mm behind / in front/ from RPP.                                                                                      | CO2               | L3        |
|          | Draw its projections and name the side view                                                                                                                         |                   |           |
| 4        | Line AD is 75 mm lange 14's Free and Tre magning 50 mm & 60 mm lange man stimula                                                                                    | COL               | 1.2       |
| 4        | End A is 10 mm above Hp and 15 mm in front of Vp. Draw projections of line AB if                                                                                    | 02                | L3        |
|          | end B is in first quadrant. Find angle with Hp and Vp.                                                                                                              |                   |           |
|          | ene D is in mot quadrant. I me angre with tip and +p.                                                                                                               |                   |           |
| 5        | Line AB 80 mm long, makes 30 0 angle with Hp and lies in an Aux. Vertical Plane 45                                                                                  | CO2               | L3        |
|          | 0 inclined to Vp. End A is 15 mm above Hp and VT is 10 mm below X-y line. Draw                                                                                      |                   |           |
|          | projections, fine angle with Vp and Ht.                                                                                                                             |                   |           |
| 6        | he projectors drawn from VT & end A of line AB are 40mm apart. End A is 15mm                                                                                        | CO2               | L3        |
|          | above Hp and 25 mm in front of Vp. VT of line is 20 mm below Hp. If line is 75mm                                                                                    |                   |           |
|          | long, draw it's projections, find inclinations with HP & Vp                                                                                                         |                   |           |
| 7        | A line AB is 75 mm long. It's Ev. & Ty make 45.0 and 60.0 inclinations with V. V. line                                                                              | CO2               | 13        |
| /        | resp End A is 15 mm above Hp and VT is 20 mm below Xv line Line is in first                                                                                         | 002               | LJ        |
|          | audrant. Draw projections, find inclinations with Hp & Vp. Also locate HT.                                                                                          |                   |           |
|          |                                                                                                                                                                     |                   |           |
| 8        | Projectors drawn from HT and VT of a line AB are 80 mm apart and those drawn                                                                                        | CO2               | L3        |
|          | from it's ends are 50 mm apart. End A is 10 mm above Hp, VT is 35 mm below Hp                                                                                       |                   |           |
|          | while it's HT is 45 mm in front of Vp. Draw projections, locate traces and find TL of                                                                               |                   |           |
|          | line & inclinations with Hp and Vp.                                                                                                                                 |                   |           |
| 9        | End A of a line AB is 25mm below Hn and 35mm behind Vn. Line is 300 inclined to                                                                                     | <u>CO</u> 2       | 1.3       |
|          | Hp. There is a point P on AB contained by both HP & VP. Draw projections. find                                                                                      | 202               | 15        |
|          | inclination with Vp and traces.                                                                                                                                     |                   |           |
|          | -                                                                                                                                                                   |                   |           |

| 10 | Draw the projections of a line AB 100mm long inclined at 45 $^{0}$ to VP and 30 $^{0}$ to HP. One end of the line is 20 mm above the HP and in the VP. Also determine the apparent length and inclinations.                                                                                | CO2 | L3 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 12 | A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view.                                                                                                                                                                    | CO2 | L3 |
| 13 | A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view.                                                                                                                                                                    | CO2 | L3 |
| 14 | Draw the projections of a line AB 100mm long inclined at 45 <sup>°</sup> to VP and 30 <sup>°</sup> to HP.<br>One end of the line is 20 mm above the HP and in the VP. Also determine the<br>apparent length and inclinations.                                                              | CO2 | L3 |
| 15 | A line AB measuring 70mm has its end A 15mm in front of VP and 20mm above HP and the other end B 60mm in front of VP and 50mm above HP. Draw the projections of the line and find the inclinations of the line with the both reference lines of projections.                               | CO2 | L3 |
| 16 | A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view.                                                                                                                                                                    | CO2 | L3 |
| 17 | A pentagonal lamina of edges 25mm each resting on HP with one of its corners such that the edge opposite to this corner is 20mm above HP and makes an angle of 45 deg with VP. Draw the top and front view is the lamina in this position. Determine the inclination of the lamina with HP | CO2 | L3 |
| 18 | An equilateral triangular lamina of 25mm side lies with one of its edges on HP such that the surface of the lamina is inclined to HP at $60^{\circ}$ . The edge on which it rests is inclined to VP at $60^{\circ}$ . Draw the projections.                                                | CO2 | L3 |
| 19 | A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view.                                                                                                                                                                    | CO2 | L3 |
| 20 | A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view.                                                                                                                                                                    | CO2 | L3 |
| 21 | Draw the projections of a line AB 100mm long inclined at 45 <sup>°</sup> to VP and 30 <sup>°</sup> to HP.<br>One end of the line is 20 mm above the HP and in the VP. Also determine the apparent length and inclinations.                                                                 | CO2 | L3 |
| 22 | A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view.                                                                                                                                                                    | CO2 | L3 |
| 23 | A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view.                                                                                                                                                                    | CO2 | L3 |
| 24 | Draw the projections of a line AB 100mm long inclined at 45 <sup>°</sup> to VP and 30 <sup>°</sup> to HP.<br>One end of the line is 20 mm above the HP and in the VP. Also determine the apparent length and inclinations.                                                                 | CO2 | L3 |
| 25 | A line AB measuring 70mm has its end A 15mm in front of VP and 20mm above HP and the other end B 60mm in front of VP and 50mm above HP. Draw the projections of the line and find the inclinations of the line with the both reference lines of projections.                               | CO2 | L3 |
| e  | Experiences                                                                                                                                                                                                                                                                                |     | -  |
| 1  |                                                                                                                                                                                                                                                                                            |     |    |

## Module – 2

| Title:   | Divide and Conquer                                              | Appr  | 10 Hrs |
|----------|-----------------------------------------------------------------|-------|--------|
|          |                                                                 | Time: |        |
| a        | Course Outcomes                                                 | -     | Blooms |
| -        | The student should be able to:                                  | -     | Level  |
| 1        | Use the Knowledge of orthographic Projections of simple solids. | CO5   | L3     |
|          |                                                                 |       |        |
| b        | Course Schedule                                                 | -     | -      |
| Class No | Module Content Covered                                          | CO    | Level  |
| 1        | Introduction, Definitions course objectives and outcomes.       | CO2   | L2     |
| 2        | Projections of right regular tetrahedron                        | CO2   | L3     |
| 3        | Projections of right regular tetrahedron                        | CO2   | L3     |
| 4        | Projections of right regular hexahedron                         | CO2   | L3     |
| 5        | Projections of right regular hexahedron                         | CO2   | L3     |

| i. |                                                                                        |     | i i   |
|----|----------------------------------------------------------------------------------------|-----|-------|
| 6  | Projections of right regular prisms                                                    | CO2 | L3    |
| 7  | Projections of right regular prisms                                                    | CO2 | L3    |
| 8  | Projections of right regular prisms                                                    | CO2 | L3    |
| 9  | Projections of right regular pyramids                                                  | CO2 | L3    |
| 10 | Projections of right regular pyramids                                                  | CO2 | L3    |
| 11 | Projections of right regular cylinders                                                 | CO2 | L3    |
| 12 | Projections of right regular cylinders                                                 | CO2 | L3    |
| 13 | Projections of right regular cylinders                                                 | CO2 | L3    |
| 14 | Projections of right regular cones                                                     | CO2 | L3    |
| 15 | Projections of right regular cones                                                     | CO2 | L3    |
| 16 | Projections of right regular cones                                                     | CO2 | L3    |
|    |                                                                                        |     |       |
| С  | Application Areas                                                                      | СО  | Level |
| 1  | To Understand the Concept of Projection of Solids.                                     | CO2 | L3    |
|    |                                                                                        |     |       |
| d  | Review Questions                                                                       | -   | -     |
| 1  | A square prism 35mm sides of base and 60mm axis length rests on HP                     | CO3 | L3    |
|    | on one of its edges of the base which is inclined to VP at $30^{\circ}$ . Draw the     |     |       |
|    | projections of the prism when the axis is inclined to HP at $45^{\circ}$ .             |     |       |
| 2  | A hexagonal prism 25mm sides of base and 50mm axis length rests on                     | CO3 | L3    |
|    | HP on one of its edges. Draw the projections of the prism when the                     |     |       |
|    | axis is inclined to HP at $45^{\circ}$ and appears to be inclined to VP $40^{\circ}$ . |     |       |
| 3  | A hexagonal prism 25mm sides of base and 50mm axis length rests on                     | CO3 | L3    |
|    | HP on one of its corners of the base such that the two base edges                      |     |       |
|    | containing the corner on which it rests make equal inclinations with                   |     |       |
|    | HP. Draw the projections of the prism when the axis of the prism is                    |     |       |
|    | inclined to HP at $40^{\circ}$ and to VP at $30^{\circ}$ .                             |     |       |
| 4  | A square pyramid 35mm sides of base and 65 mm axis length rests on                     | CO3 | L3    |
|    | HP on one of its edges of the base. Draw the projections of the prism                  |     |       |
|    | when the axis is inclined to HP at $45^{\circ}$ and VP at $30^{\circ}$ .               |     |       |
| 5  | A pentagonal pyramid 25mm sides of base and 50mm axis length rests                     | CO3 | L3    |
|    | on HP on one of its corners of the base such that the two base edges                   |     |       |
|    | containing the corner on which it rests make equal inclinations with                   |     |       |
|    | HP. Draw the projections of the pyramid when the axis of the pyramid                   |     |       |
|    | is inclined to HP at $40^{\circ}$ and to VP at $30^{\circ}$ .                          |     |       |
| 6  | A hexagonal pyramid 25mm sides of base and 50mm axis length rests                      | CO3 | L3    |
|    | on HP on one of its corners of the base such that the two base edges                   |     |       |
|    | containing the corner on which it rests make equal inclinations with                   |     |       |
|    | HP. Draw the projections of the pyramid when the axis of the pyramid                   |     |       |
|    | is inclined to HP at $40^{\circ}$ and to VP at $30^{\circ}$ .                          |     |       |
| 7  | A pentagonal pyramid 25mm sides of base and 50mm axis length rests                     | CO3 | L3    |
|    | on HP on one of its slant triangular faces. Draw the projections of the                |     |       |
|    | pyramid when the axis is inclined to VP at $45^{\circ}$ .                              |     |       |
| 8  | A hexagonal pyramid 25mm sides of base and 50mm axis length rests                      | CO3 | L3    |
|    | on HP on one of its slant triangular faces. Draw the projections of the                |     |       |
|    | pyramid when the axis is inclined to VP at 45°.                                        |     |       |
| 9  | A cone of base dia 40mm and axis length 50mm is resting on HP on a                     | CO3 | L3    |
|    | point on the circumference of its base such that its apex is at 40mm                   |     |       |
|    | above the HP and its top view of the axis is inclined at $60^{\circ}$ to VP. Draw      |     |       |
|    | the top and front views of the solid. Also, determine the inclinations of              |     |       |
|    | the axis when the base is nearer to the observer.                                      |     |       |

| e | Experiences | - | - |
|---|-------------|---|---|

## **E1. CIA EXAM – 1**

### a. Model Question Paper - 1

| Crs C | ode: | 18EGDL15 Sem: I Marks: 30 Time:                                              | 75            | minutes |     |       |
|-------|------|------------------------------------------------------------------------------|---------------|---------|-----|-------|
| Cours | se:  | Design and Analysis of Algorithms                                            | ·             |         |     |       |
| -     | -    | Note: Answer any 3 questions, each carry equal marks.                        |               | Marks   | CO  | Level |
| 1     | а    | A point is 35 mm below H P 20 mm behind VP and 25mm behind                   | nd in         | 15      | CO2 | L3    |
|       |      | <i>front</i> from RPP. Draw its projections and name the side view.          |               |         |     |       |
|       | b    | Line AB is 75 mm long .It's Fv and Tv measure 50 mm & 60 mm                  | long          | 15      | CO2 | L3    |
|       |      | respectively. End A is 10 mm above Hp and 15 mm in front o                   | f Vp.         |         |     |       |
|       |      | Draw projections of line AB if end B is in first quadrant. Find              | angle         |         |     |       |
|       |      | with Hp and Vp.                                                              | U             |         |     |       |
|       |      |                                                                              |               |         |     |       |
|       |      |                                                                              |               |         |     |       |
| 2     |      | Draw the top and front views of a hexagonal lamina of 30mm                   | sides         | 30      | CO3 | L3    |
|       |      | having two of its edges parallel to both vertical and horizontal p           | lanes         |         |     |       |
|       |      | and one of its edges is 10mm from each of the planes of proje                | ction.        |         |     |       |
|       |      | The surface of the lamina is inclined at an angle of $60^{\circ}$ to the HP. |               |         |     |       |
|       |      |                                                                              |               |         |     |       |
|       |      |                                                                              |               |         |     |       |
| 3     |      | A hexagonal pyramid 25mm sides of base and 50 mm axis length                 | rests         | 30      | CO3 | L3    |
| 0     |      | on HP on one of its edges of the base which is inclined to VP a              | $130^{\circ}$ |         |     |       |
|       |      | Draw the projections of the prism when the axis is inclined to               | HP at         | -       |     |       |
|       |      | $15^{\circ}$                                                                 | in a          | -       |     |       |
|       |      |                                                                              |               |         |     |       |
|       |      |                                                                              |               |         |     |       |
|       |      |                                                                              |               |         |     |       |
| 4     |      | A circular lamina of 30mm diameter rest on VP such that one                  | of its        | 30      | CO3 | L3    |
|       |      | diameters is inclined at 30° to VP and 45° to HP. Draw its top               | o and         |         |     |       |
|       |      | front views in this position.                                                |               |         |     |       |

### b. Assignment -1

Note: A distinct assignment to be assigned to each student.

|        |                                                                                   |           |                                                             |          | Model Assignmen            | t Question         | S                   |            |     |    |
|--------|-----------------------------------------------------------------------------------|-----------|-------------------------------------------------------------|----------|----------------------------|--------------------|---------------------|------------|-----|----|
| Crs Co | ode:                                                                              | 18EGDL    | 5 Sem:                                                      | Ι        | Marks:                     | 5 / 10             | Time:               | 90 − 120 n |     |    |
| Cours  | e:                                                                                | Design an | d Analysis of A                                             | Algorith | nms                        |                    |                     |            |     |    |
| Note:  | Note: Each student to answer 2-3 assignments. Each assignment carries equal mark. |           |                                                             |          |                            |                    |                     |            |     |    |
| SNo    | SNo USN Assignment Description                                                    |           |                                                             |          | Marks                      | CO                 | Level               |            |     |    |
| 1      |                                                                                   |           | An equilateral triangular lamina of 25mm side lies with one |          |                            |                    |                     |            | CO3 | L3 |
|        |                                                                                   |           | of its edges                                                | on H     | P such that the            | surface            | of the lamina i     | S          |     |    |
|        |                                                                                   |           | inclined to I                                               | HP at 6  | 50°. The edge of           | n which            | it rests is incline | d          |     |    |
|        | to VP at $60^{\circ}$ . Draw the projections.                                     |           |                                                             |          |                            |                    |                     |            |     |    |
| 2      |                                                                                   |           | An equilate                                                 | ral tria | ngular lamina              | of 25mm            | n side lies on on   | e 10       | CO3 | L3 |
|        |                                                                                   |           | of its sides                                                | on HP    | The lamina ma              | akes 45°           | with HP and on      | e          |     |    |
|        |                                                                                   |           | of its media                                                | ns is ir | nclined at $40^{\circ}$ to | VP. Dra            | w its projections   | •          |     |    |
| 3      |                                                                                   |           | A triangula                                                 | r lami   | na of 25mm s               | sides res          | sts on one of it    | s 10       | CO3 | L3 |
|        |                                                                                   |           | corners on                                                  | VP su    | ch that the me             | dian pas           | ssing through th    | e          |     |    |
|        |                                                                                   |           | corner on w                                                 | hich i   | t rests is incline         | ed at $30^{\circ}$ | to HP and 45° t     | о          |     |    |
|        |                                                                                   |           | VP. Draw th                                                 | e proj   | ections.                   |                    |                     |            |     |    |

| 4  | A triangular plane figure of sides 25 mm is resting on HP with one of its corners, such that the surface of the lamina makes an angle of $60^{\circ}$ with HP. If the side opposite to the corner on which the lamina rests makes an angle of $30^{\circ}$ with VP, draw the top and front views in this position.                                                                       | 10 | CO3 | L3 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
| 5  | A triangular plane lamina of sides 25mm is resting on HP with one of its corners touching it, such that the side opposite to the corner on which it rests is 15mm above HP and makes an angle of 30° with VP. Draw the top and front views in this position. Also determine the inclination of the lamina to the reference plane.                                                        | 10 | CO3 | L3 |
| 6  | A 30-60° set square of 60mm longest side is so kept such<br>that the longest side is in HP, making an angle of 30° with<br>VP. The set square itself is inclined at 45° to VP. Draw the<br>projections of the set square.                                                                                                                                                                | 10 | CO3 | L3 |
| 7  | An isosceles triangular plate of negligible thickness has<br>base 25mm long and altitude of 35mm is placed on HP<br>such that in the front view is seen as an equilateral triangle<br>of 25mm sides with the side that is parallel to VP is<br>inclined at $45^{\circ}$ to HP. Draw its top and front views. Also<br>determine the inclination of the plate with the reference<br>plane. | 10 | CO3 | L3 |
| 8  | A square lamina of 40mm side rests on one of its sides on HP. The lamina makes $30^{\circ}$ to HP and the side on which it rests makes $45^{\circ}$ to VP. Draw its projections.                                                                                                                                                                                                         | 10 | CO3 | L3 |
| 9  | A square plate of 40mm sides rests on HP such that one of<br>the diagonals is inclined at 30° to HP and 45° to VP. Draw<br>its projections.                                                                                                                                                                                                                                              | 10 | CO3 | L3 |
| 10 | A square lamina ABCD of 40mm side rests on corner A<br>such that the diagonal AC appears to be at 45° to VP. The<br>two sides AB and AD containing the A make equal<br>inclinations with HP. The surface of the lamina makes 30°<br>with HP. Draw its top and front views.                                                                                                               | 10 | CO3 | L3 |
| 11 | A top view of a square lamina of side 30 mm is a rectangle<br>is a sides 30mm x 20mm with the longer side of the<br>rectangle being parallel to both HP and VP. Draw the front<br>views of the square lamina. What is the inclination of the<br>surface of the lamina with HP and VP?                                                                                                    | 10 | CO3 | L3 |
| 12 | A rectangular lamina of sides 20mm x 30mm rests on HP<br>on one of its longer edges. The lamina is tilted about the<br>edge on which it rests till its plane surface is inclined to HP<br>at 45 °. The edge on which it rests is inclined at 30° to VP.<br>Draw the projections of the lamina.                                                                                           | 10 | CO3 | L3 |
| 13 | A rectangular lamina of 35mm x 20mm rests on HP one of<br>its shorter edges. The lamina is rotated about the edge on<br>which it rests till it appears as a square in the top view. The<br>edge on which the lamina rests being parallel to both HP<br>and VP. Draw its projections and find its inclinations to HP<br>and VP.                                                           | 10 | CO3 | L3 |
| 14 | A rectangular lamina of 35mm x 20mm rests on HP on one<br>of its shorter edges. The lamina is rotated about the edge on<br>which it rests till it appears as a square in the top view. The                                                                                                                                                                                               | 10 | CO3 | L3 |

|    | edge on which the lamina rests is inclined $30^{\circ}$ to VP. Draw its projections and find its inclination to HP.                                                                                                                                                                                                                                                                                                                               |    |     |    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
| 15 | A rectangular lamina of sides 20mm x 25mm has an edge<br>in HP and adjoining in VP, is tilted such the front view<br>appears as a rectangle of 20mm x 15mm. The edge, which<br>is in VP, is 30mm from the right profile plane. (a) Draw the<br>top view, front view and the left profile view in this<br>position. (b) Find its inclinations with the corresponding<br>principal planes.                                                          | 10 | CO3 | L3 |
| 16 | The front view of a rectangular lamina of sides 30mm x<br>20mm is square of 20mm sides. Draw the projections and<br>determine the inclinations of the surface of the lamina with<br>HP and VP.                                                                                                                                                                                                                                                    | 10 | CO3 | L3 |
| 17 | A mirror 30mm x 40mm is inclined to the wall such that its<br>front view is a square of 30mm side. The longer sides of<br>the mirror appear perpendicular to both HP and VP. Find<br>the inclination of the mirror with the wall.                                                                                                                                                                                                                 | 10 | CO3 | L3 |
| 18 | A rectangle plate of negligible thickness of size 35 x 20mm<br>has one of its shorter edges in VP with that edge inclined at<br>40° to HP. Draw the top view it its front view is a square of<br>side 20mm.                                                                                                                                                                                                                                       | 10 | CO3 | L3 |
| 19 | A pentagonal lamina of edges 25mm is resting on HP with<br>one of its sides such that the surface makes an angle of 60<br>with HP. The edge on which it rests is inclined at 45° to VP.<br>Draw its projections                                                                                                                                                                                                                                   | 10 | CO3 | L3 |
| 20 | A pentagonal lamina of edges 25mm is resting on HP with<br>one of its corners such that the plane surface makes an<br>angle of $60^{\circ}$ with HP. The two of the edges containing the<br>corner on which the lamina rests make equal inclinations<br>with HP. When the edge opposite to this corner make an<br>angle of $45^{\circ}$ with VP and nearer to the observer, draw the<br>top and front views of the plane lamina in this position. | 10 | CO3 | L3 |
| 21 | A pentagonal lamina of edges 25mm is resting on HP with<br>one of its corners such that the corner is 20mm above HP<br>and makes an angle of 45° with VP. Draw the top and front<br>views of the lamina in this position. Determine the<br>inclination of the lamina with HP.                                                                                                                                                                     | 10 | CO3 | L3 |
| 22 | A pentagonal lamina of sides 25mm is resting on HP with<br>one of its edges on HP with the corner opposite to that edge<br>touching VP. This edge is parallel to VP and the corner,<br>which touches VP, is at a height of 15mm above HP. Draw<br>the projections of the lamina and determine the inclinations<br>of the lamina with HP and VP and the distance at which the<br>parallel edge lies from VP.                                       | 10 | CO3 | L3 |
| 23 | A pentagonal lamina of edges 25mm is placed on one of its corners on HP such that the perpendicular bisector of the edge passing through the corner on which the lamina rests is inclined at 30° to HP and 45° VP. Draw the top and front views of the lamina.                                                                                                                                                                                    | 10 | CO3 | L3 |
| 24 | A pentagonal lamina of sides 25mm is having a side both<br>on HP and VP. The corner opposite to the side o which it<br>rests is 15mm above HP. Draw the top and front views of                                                                                                                                                                                                                                                                    | 10 | CO3 | L3 |

|    | the lamina.                                                                                                                                                                                                                                                                                                                 |    |     |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
| 25 | A pentagonal lamina of sides 25mm is having a side both<br>on HP and VP. The surface of the lamina is inclined at an<br>angle of $60^{\circ}$ with HP. Draw the top and front views of the<br>lamina.                                                                                                                       | 10 | CO3 | L3 |
| 26 | A regular pentagonal lamina of 25mm side is resting on one<br>of its corners on HP while the side opposite to this corner<br>touches VP. If the lamina makes an angle of 60° with HP.<br>Draw the projections of the lamina.                                                                                                | 10 | CO3 | L3 |
| 27 | A pentagonal lamina having edges 25mm is placed on one<br>of its corners on HP such that the surface makes an angle of<br>30° with HP and perpendicular bisector of the edge passing<br>through the corner on which the lamina rests appears to be<br>inclined at 30° to VP. Draw the top and front views of the<br>lamina. | 10 | CO3 | L3 |
| 28 | A regular pentagonal lamina of 25mm side is resting on one<br>of its sides on HP while the corner opposite to this side<br>touches VP. If the lamina makes an angle of 60° with HP,<br>draw the projections of the lamina.                                                                                                  | 10 | CO3 | L3 |
| 29 | A pentagonal lamina of edges 25mm is resting on VP with<br>one of its sides such that the surface makes an angle of 60°<br>with VP. The edge on which it rests is inclined at 45° to HP.<br>Draw the projections.                                                                                                           | 10 | CO3 | L3 |
| 30 | A pentagonal lamina having edges 25mm is placed on of its<br>corners on VP such that the surface makes an angle 30°<br>with VP and perpendicular bisector of the edge, passing<br>through the corner on which the lamina rests appears to be<br>inclined at 30° to HP. Draw the top and front views of the<br>lamina.       | 10 | CO3 | L3 |
| 31 | A pentagonal lamina having edges 25mm is placed on of its<br>corners on VP such that the surface makes an angle $30^{\circ}$<br>with VP and perpendicular bisector of the edge, passing<br>through the corner on which the lamina rests is inclined at<br>$45^{\circ}$ to HP. Draw the top and front views of the lamina.   | 10 | CO3 | L3 |
| 32 | A hexagonal lamina of 30mm sides rests on HP with one of<br>its corners touching VP and surface inclined at $45^{\circ}$ to it.<br>One of its edges is inclined to HP at $30^{\circ}$ . Draw the front<br>and top views of the lamina in its final position.                                                                | 10 | CO3 | L3 |
| 33 | Draw the top and front views of a hexagonal lamina of 30mm sides having two of its edges parallel to both vertical and horizontal planes and one of its edges is 10mm from each of the planes of projection. The surface of the lamina is inclined at an angle of $60^{\circ}$ to the HP.                                   | 10 | CO3 | L3 |
| 34 | A regular hexagon of sides 30mm is lying in such a way that one of its sides touches both the reference planes. If the lamina makes $60^{\circ}$ with HP, draw the projections of the lamina.                                                                                                                               | 10 | CO3 | L3 |
| 35 | A regular hexagon of sides 30mm is lying in such a way<br>that one of its sides touches both the reference planes. If the<br>side opposite to the side on which it rests is 45mm above<br>HP, draw the projections of the lamina.                                                                                           | 10 | CO3 | L3 |

| 36 | A regular hexagonal lamina of sides 25mm is lying in such<br>a way that one of its sides on HP while the side opposite on<br>which it rests is on VP. If the lamina makes $60^{\circ}$ to HP.<br>Draw the projections of the lamina.                                                                | 10 | CO3 | L3 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
| 37 | A regular hexagonal lamina of sides 25mm is lying in such<br>a way that one of corners pm HP while the corner opposite<br>to the corner on which it rest is on VP. If the lamina makes<br>60° to HP, Draw the projections of the lamina.                                                            | 10 | CO3 | L3 |
| 38 | A hexagonal lamina of sides 30mm is resting on one of its corners in VP and its surface inclined at an angle of 30° with VP. The diagonal passing through that corner which is in VP is inclined at 45° to HP. Draw the projections of the lamina.                                                  | 10 | CO3 | L3 |
| 39 | A hexagonal lamina of sides 30mm is resting on one of its corners in VP and its surface inclined at an angle of 30° with VP. The diagonal passing through that corner which is in VP appears to be inclined at 45° to HP. Draw the projections of the lamina.                                       | 10 | CO3 | L3 |
| 40 | A hexagonal lamina of sides 25mm rests on one of its sides<br>on HP. The lamina makes 45° to HP and the side on which<br>it rests makes 30° to VP. Draw its projections.                                                                                                                            | 10 | CO3 | L3 |
| 41 | A hexagonal lamina of sides 25mm rests on one of its corners on HP. The lamina makes $45^{\circ}$ to HP and the diagonal passing through the corner on which it rests is inclined at $30^{\circ}$ to VP. Draw its projections.                                                                      | 10 | CO3 | L3 |
| 42 | A hexagonal lamina of sides 25mm rests on one of its corners on HP. The lamina makes 45° to HP and the diagonal passing through the corner on which it rests appears to be inclined at 30° to VP. Draw its projections.                                                                             | 10 | CO3 | L3 |
| 43 | A hexagonal lamina of sides 25mm rests on one of its sides<br>on VP. The lamina makes 45° to VP and the side on which<br>it rests makes 45° to HP. Draw its projections.                                                                                                                            | 10 | CO3 | L3 |
| 44 | A hexagonal lamina of sides 25mm rests on one of its sides<br>on VP. The side opposite to the side on which it rests is<br>30mm infront of VP and the side on which it rests makes<br>45° to HP. Draw its projections. Also determine the<br>inclination of the lamina with the reference plane.    | 10 | CO3 | L3 |
| 45 | A hexagonal lamina of sides 25mm rests on one of its corners on HP. The corner opposite to the corner on which it rests is 35mm above HP and the diagonal passing through the corner on which it rests is inclined at 30° to VP. Draw its projections. Find the inclination of the surface with HP. | 10 | CO3 | L3 |
| 46 | An equilateral triangular lamina of 25mm side lies with one of its edges on HP such that the surface of the lamina is inclined to HP at $60^{\circ}$ . The edge on which it rests is inclined to VP at $60^{\circ}$ . Draw the projections.                                                         | 10 | CO3 | L3 |

## **D2. TEACHING PLAN - 2**

### Module – 3

| Title: | Divide and Conquer | Appr<br>Time: | 16 Hrs |
|--------|--------------------|---------------|--------|
|--------|--------------------|---------------|--------|

| a       | Course Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                 | Blooms |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|
| -       | The student should be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                 | Level  |
| 1       | Draw the development of Lateral surface of simple Solids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO6               | L3     |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |        |
| b       | Course Schedule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |        |
| Class N | o Module Content Covered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO                | Level  |
| 1       | Introduction to Section planes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO3               | L3     |
| 2       | Sections, Section views, Apparent shapes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO3               | L3     |
| 3       | Sections, Section views, Apparent shapes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO3               | L3     |
| 4       | True shapes of Sections of right regular prisms resting with base on hp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO3               | L3     |
| 5       | True shapes of Sections of right regular prisms resting with base on hp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO3               | L3     |
| 6       | True shapes of Sections of right regular prisms resting with base on hp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO3               | L3     |
| 7       | True shapes of Sections of right regular pyramids resting with base on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO3               | L3     |
|         | hp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GOA               | 1.0    |
| 8       | Irue shapes of Sections of right regular pyramids resting with base on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO3               | L3     |
| 0       | np<br>Trace the set of the set of sight second and second in the second | <u> </u>          | 1.2    |
| 9       | True snapes of Sections of right regular cylinders resting with base on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 003               | L3     |
| 10      | np<br>True shapes of Sections of right regular cones resting with base on hp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO3               | 13     |
| 10      | Development of their frustume and truncations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{CO3}{CO3}$ |        |
| 11      | Development of their frustums and truncations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{CO3}{CO3}$ |        |
| 12      | Development of their rustums and truncations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 005               | L3     |
| С       | Application Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO                | Level  |
| 1       | To the Development of Lateral surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO3               | L3     |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |        |
| d       | Review Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                 | -      |
| 1       | A rectangular prism of base size $25\text{mm} \times 40$ mm and axis length $65$ mm is resting on H P on its base with the longer side of base inclined at $30^{\circ}$ to VP. It is cut by a plane inclined at $40^{\circ}$ to HP and perpendicular to VP and passes through the extreme left corner of base. Draw the development of the lateral surface of the remaining portion of the the prism.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO3               | L3     |
| 2       | A vertical cylinder of base diameter 45mm and axis length 60mm is<br>cut by a plane perpendicular to VP and inclined at 50° to HP is passing<br>through the center point of the top face. Draw the development of the<br>Lateral surface of the cylinder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO3               | L3     |
| 3       | A square pyramid of 25mm base edge and 50mm height rests with its base on HP with all of its base edges equally inclined to VP. It is cut by a plane perpendicular to VP and inclined to HP at 60° passing throught the extreme right corner of base. Draw the development of the lateral surface of the Pyramid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO3               | L3     |
| •       | Fynariancas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                 |        |
| е<br>1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                 | -      |
| 2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |        |
| 4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | L      |

## Module - 4

| Title: | Divide and Conquer | Appr<br>Time: | 16 Hrs |
|--------|--------------------|---------------|--------|
|        |                    | Time:         |        |

| a        | Course Outcomes                                                            | -          | Blooms |
|----------|----------------------------------------------------------------------------|------------|--------|
| -        | The student should be able to:                                             | -          | Level  |
| 1        | Draw the isometric Projection of Simple plans and solids                   | CO7        | L3     |
|          |                                                                            |            |        |
| b        | Course Schedule                                                            |            |        |
| Class No | Module Content Covered                                                     | CO         | Level  |
| 1        | Introduction to Subject, course objectives and outcomes                    | CO4        | L3     |
| 2        | Isometric scale                                                            | CO4        | L3     |
| 3        | Isometric projection of simple plane                                       | CO4        | L3     |
| 4        | Isometric projection of simple plane figures                               | CO4        | L3     |
| 5        | Isometric projection of simple plane figures                               | CO4        | L3     |
| 6        | Isometric projection of tetrahedron                                        | CO4        | L3     |
| 7        | Isometric projection of tetrahedron                                        | CO4        | L3     |
| 8        | Isometric projection of hexahedron                                         | CO4        | L3     |
| 9        | Isometric projection of hexahedron                                         | CO4        | L3     |
| 10       | right regular prisms                                                       | CO4        | L3     |
| 11       | Isometric projection of pyramids                                           | CO4        | L3     |
| 12       | Isometric projection of cylinders                                          | CO4        | L3     |
| 13       | Isometric projection of cones                                              | CO4        | L3     |
| 14       | cut spheres and combination of two solids,                                 | CO4        | L3     |
| 15       | conversion of given isometric/pictorial views to orthographic views of     | CO4        | L3     |
|          | simple objects                                                             |            |        |
|          |                                                                            |            |        |
| c        | Application Areas                                                          | CO         | Level  |
| 1        | To the Development of Lateral surface                                      | CO4        | L3     |
|          |                                                                            |            |        |
| d        | Review Questions                                                           | -          | -      |
| 1        | A rectangular prism of base size 25mm X 40 mm and axis length              | CO4        | L3     |
|          | 65 mm is resting on H P on its base with the longer side of base           |            |        |
|          | inclined at 30° to VP. It is cut by a plane inclined at 40° to HP and      |            |        |
|          | perpendicular to VP and passes through the extreme left corner of          |            |        |
|          | base. Draw the development of the lateral surface of the                   |            |        |
| 2        | A subara of diameter 50 mm roots controlly a top of a suba of sides 50     | <u>CO4</u> | 12     |
| 2        | mm Draw the isometric projections of the combination of solids             | C04        | LS     |
| 2        | A hemisphere of 40 mm diameter is supported co-axially on ht vertex        | CO4        | 13     |
| 2        | of a cone of base dia 60 mm and axis length 50mm. The flat circular        | 04         | L3     |
|          | face of the hemisphere is facing unside Draw the isometric                 |            |        |
|          | projections of the combination of solids                                   |            |        |
| 3        | Draw the isometric projection of a rectangular prism of $60 \ge 80 \ge 20$ | CO4        | L3     |
| 5        | mm thick surrounding a tetrahedron of sides 45mm such that the axes        | 001        | 20     |
|          | of the solids are collinear and at least one of the edges of both the      |            |        |
|          | solids is parallel to VP.                                                  |            |        |
|          | <b>r</b>                                                                   |            |        |
| 4        | Following figure shows the top view of a cylinder which is centrally       | CO4        | L3     |
|          | mounted on a frustum of a pentagonal pyramid of 60mm Height.               |            |        |
| 1        | Draw the isometric prejections of the combination of colids                |            |        |

| 5 | Following figure shows the front view of combination of solids                                                                                                                                                                                                                                     | CO4 | L3 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
|   | consisting of a cut sphere and frustums of a cone and a square pyramid. Draw the isometric projections of the combination of solids.                                                                                                                                                               | CO1 |    |
| 6 | The frustum of a square pyramid of base side 40mm, top face side 20mm and height 60mm rest on the center of the square block of side 60mm and height 20mm. The edges of the pyramid are parallel to the top edges of the square block. Draw the isometric projections of the combination of solids | CO4 | L3 |
| 7 | A rectangular pyramid of base $40\text{mm} \ge 25\text{mm}$ and height $50\text{mm}$ is placed centrally on a rectangular slab sides $100\text{mm} \ge 60\text{mm}$ and thickness $20\text{mm}$ . Draw the isometric projections of the combination.                                               | CO4 | L3 |
| 8 | A frustum of cone base diameter 50mm, top diameter 25mm and<br>height 50mm is placed centrally on the top face of a cylinder diameter<br>60mm and height 60mm. Draw the isometric projections of the<br>combination.                                                                               | CO4 | L3 |
| 9 | A hemisphere diameter 50mm is resting on its curved surface centrally<br>on the top face of frustum of a rectangular pyramid base 80mm x<br>60mm and top 60mm x 40mm, height 55mm. Draw the isometric                                                                                              | CO4 | L3 |

|    | projections of the combination.                                     |     |    |
|----|---------------------------------------------------------------------|-----|----|
| 10 | A hemisphere diameter 70mm is placed on the ground on its curved    | CO4 | L3 |
|    | surface. A cone base diameter 70mm and height 70mm is placed        |     |    |
|    | centrally on it. Draw the isometric projections of the combination. |     |    |
| e  | Experiences                                                         | -   | -  |
| 1  |                                                                     |     |    |
| 2  |                                                                     |     |    |
| 5  |                                                                     |     |    |

## E2. CIA EXAM – 2

### a. Model Question Paper - 2

| Crs |      |                                                       | Sem:        | Ι          | Marks:           | 30        | Time: 7             | 5 minute | es |       |
|-----|------|-------------------------------------------------------|-------------|------------|------------------|-----------|---------------------|----------|----|-------|
| Cod | e:   | 18EGDL1                                               |             |            |                  |           |                     |          |    |       |
|     |      | 5                                                     |             |            |                  |           |                     |          |    |       |
| Cou | rse: | Engineerin                                            | g Graphic   | S          |                  |           |                     |          |    |       |
| -   | -    | Note: Answer any 2 questions, each carry equal marks. |             |            |                  |           |                     |          | CO | Level |
|     |      |                                                       |             |            |                  |           |                     | S        |    |       |
| 1   |      | A rectangu                                            | ılar pyran  | id of ba   | se 40mm x 2      | 5mm ar    | d height 50mm       | is CO4   | L3 | CO4   |
|     |      | placed cen                                            | trally on   | a rectar   | ngular slab si   | des 100   | mm x 60mm an        | d        |    |       |
|     |      | thickness 2                                           | 0mm. Dra    | w the is   | ometric projec   | tions of  | the combination.    |          |    |       |
| 2   |      | The frustu                                            | m of a sc   | uare pyr   | amid of base     | side 40   | mm, top face sid    | le CO4   | L3 | CO4   |
|     |      | 20mm and                                              | height 60   | mm rest    | on the centre    | of the se | quare block of sid  | le       |    |       |
|     |      | 60mm and                                              | height 20   | mm. The    | e edges of the   | pyramic   | are parallel to the | ie       |    |       |
|     |      | top edges o                                           | of the squ  | are bloc   | k. Draw the is   | sometric  | projections of th   | ie       |    |       |
|     |      | combinatio                                            | on of solid | S          |                  |           |                     |          |    |       |
| 3   |      | A hemisph                                             | ere diame   | ter 70m    | m is placed of   | n the gro | ound on its curve   | d CO4    | L3 | CO4   |
|     |      | surface. A                                            | cone bas    | se diame   | eter 70mm an     | d heigh   | t 70mm is place     | d        |    |       |
|     |      | centrally or                                          | n it. Draw  | the isom   | etric projectio  | ns of the | e combination.      |          |    |       |
| 4   |      | A sphere of                                           | f diameter  | 50 mm      | rests centrally  | o top of  | a cube of sides 5   | 0 CO4    | L3 | CO4   |
|     |      | mm. Draw                                              | the isome   | tric proje | ections of the o | combina   | tion of solids.     |          |    |       |
|     |      |                                                       |             | 1 9        |                  |           |                     |          |    |       |

### b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

|        | Model Assignment Questions                                                        |             |            |                 |              |             |        |           |         |       |
|--------|-----------------------------------------------------------------------------------|-------------|------------|-----------------|--------------|-------------|--------|-----------|---------|-------|
| Crs Co | de: 18EGDL1                                                                       | 5 Sem:      | Ι          | Marks:          | 5 / 10       | Time:       | 90     | ) – 120 n | ninutes |       |
| Course | e: Engineeri                                                                      | ng Graphics |            |                 |              |             |        |           |         |       |
| Note:  | Note: Each student to answer 2-3 assignments. Each assignment carries equal mark. |             |            |                 |              |             |        |           |         |       |
| SNo    | USN                                                                               |             | А          | ssignment De    | escription   |             |        | Mark      | CO      | Level |
|        |                                                                                   |             |            |                 |              |             |        | S         |         |       |
| 1      |                                                                                   | A rectange  | ılar pyra  | mid of base 4   | 40mm x 25    | 5mm and h   | eight  | CO4       | L3      | CO4   |
|        |                                                                                   | 50mm is     | placed     | centrally on    | a rectang    | ular slab   | sides  |           |         |       |
|        |                                                                                   | 100mm x     | 60mm a     | nd thickness    | 20mm. Dra    | w the ison  | netric |           |         |       |
|        |                                                                                   | projection  | s of the c | combination.    |              |             |        |           |         |       |
| 2      |                                                                                   | The frustu  | m of a     | square pyrami   | id of base   | side 40mm   | i, top | CO4       | L3      | CO4   |
|        |                                                                                   | face side 2 | 20mm ar    | nd height 60m   | m rest on t  | he centre c | of the |           |         |       |
|        |                                                                                   | square blo  | ck of sid  | le 60mm and 1   | neight 20m   | m. The edg  | es of  |           |         |       |
|        |                                                                                   | the pyram   | id are p   | parallel to the | top edges    | s of the so | quare  |           |         |       |
|        |                                                                                   | block. Dra  | w the is   | ometric projec  | tions of the | combinati   | on of  |           |         |       |
|        |                                                                                   | solids      |            | 1 5             |              |             |        |           |         |       |
| 3      |                                                                                   | Draw the    | isometri   | c projection of | f a rectangi | ular prism  | of 60  | CO4       | L3      | CO4   |

|    | x 80 x 20 mm thick surrounding a tetrahedron of sides 45mm such that the axes of the solids are collinear and at least one of the edges of both the solids is parallel to VP.                                                                                                                                     |     |    |     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----|
| 4  | A sphere of diameter 50 mm rests centrally o top of a cube<br>of sides 50 mm. Draw the isometric projections of the<br>combination of solids.                                                                                                                                                                     | CO4 | L3 | CO4 |
| 5  | The frustum of a square pyramid of base side 40mm, top<br>face side 20mm and height 60mm rest on the centre of the<br>square block of side 60mm and height 20mm. The edges of<br>the pyramid are parallel to the top edges of the square<br>block. Draw the isometric projections of the combination of<br>solids | CO4 | L3 | CO4 |
| 6  | A rectangular pyramid of base 40mm x 25mm and height 50mm is placed centrally on a rectangular slab sides 100mm x 60mm and thickness 20mm. Draw the isometric projections of the combination.                                                                                                                     | CO4 | L3 | CO4 |
| 7  | A frustum of cone base diameter 50mm, top diameter 25mm and height 50mm is placed centrally on the top face of a cylinder diameter 60mm and height 60mm. Draw the isometric projections of the combination.                                                                                                       | CO4 | L3 | CO4 |
| 8  | A hemisphere diameter 50mm is resting on its curved<br>surface centrally on the top face of frustum of a rectangular<br>pyramid base 80mm x 60mm and top 60mm x 40mm,<br>height 55mm. Draw the isometric projections of the<br>combination.                                                                       | CO4 | L3 | CO4 |
| 9  | A sphere of diameter 50 mm rests centrally o top of a cube<br>of sides 50 mm. Draw the isometric projections of the<br>combination of solids.                                                                                                                                                                     | CO4 | L3 | CO4 |
| 10 | A hemisphere of 40 mm diameter is supported co-axially<br>on ht vertex of a cone of base dia. 60 mm and axis length<br>50mm. The flat circular face of the hemisphere is facing<br>upside. Draw the isometric projections of the combination<br>of solids.                                                        | CO4 | L3 | CO4 |
| 11 | Draw the isometric projection of a rectangular prism of 60 x 80 x 20 mm thick surrounding a tetrahedron of sides 45mm such that the axes of the solids are collinear and at least one of the edges of both the solids is parallel to VP.                                                                          | CO4 | L3 | CO4 |
| 12 | Following figure shows the top view of a cylinder which is<br>centrally mounted on a frustum of a pentagonal pyramid of<br>60mm Height. Draw the isometric projections of the<br>combination of solids.                                                                                                           | CO4 | L3 | CO4 |



## **E3. CIA EXAM – 3**

#### a. Model Question Paper - 3

| Crs   |      | Sem: I Marks: 30 Time: 75                             |              |             |            |          |               |       | 5 minutes |    |  |
|-------|------|-------------------------------------------------------|--------------|-------------|------------|----------|---------------|-------|-----------|----|--|
| Code: |      | 18EGDL1                                               |              |             |            |          |               |       |           |    |  |
|       |      | 5                                                     |              |             |            |          |               |       |           |    |  |
| Cou   | rse: | Engineerin                                            | g Graphics   |             |            |          |               |       |           |    |  |
| -     | -    | Note: Answer any 2 questions, each carry equal marks. |              |             |            |          | Mark          | CO    | Level     |    |  |
|       |      |                                                       |              |             |            |          |               | S     |           |    |  |
| 1     |      | Fol                                                   | lowing figu  | are shows   | the front  | and side | views of soli | d. 30 | CO5       | L3 |  |
|       |      | Draw the is                                           | sometric pro | pjection of | the solid. |          |               |       |           |    |  |



### b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

|       |       |             |                                                            | Moo       | lel Assignmer  | nt Question  | S               |                  |     |       |
|-------|-------|-------------|------------------------------------------------------------|-----------|----------------|--------------|-----------------|------------------|-----|-------|
| Crs C | Code: | 18EGDI      | 1 Sem:                                                     | Ι         | Marks:         | 5 / 10       | Time:           | 90 - 120 minutes |     |       |
|       |       | 5           |                                                            |           |                |              |                 |                  |     |       |
| Cour  | se:   | Enginee     | ring Graphic                                               | CS        |                |              |                 |                  |     |       |
| Note: | Each  | n student   | to answer 2-                                               | -3 assign | nments. Each   | assignment   | carries equal   | mark.            |     |       |
| SNo   | τ     | U <b>SN</b> | Assignment Description N                                   |           |                |              |                 |                  | CO  | Level |
|       |       |             |                                                            |           | S              |              |                 |                  |     |       |
| 1     |       |             | The frustum                                                | of a so   | quare pyramic  | d of base s  | ide 40mm, to    | p 30             | CO5 | L3    |
|       |       |             | face side 20                                               | mm and    | l height 60mr  | n rest on th | ne center of th | e                |     |       |
|       |       |             | square block                                               | c of side | 60mm and h     | eight 20mn   | n. The edges o  | of               |     |       |
|       |       |             | the pyramid                                                | l are pa  | rallel to the  | top edges    | of the squar    | e                |     |       |
|       |       |             | block. Draw                                                | the ison  | netric project | ions of the  | combination of  | of               |     |       |
|       |       |             | solids                                                     |           |                |              |                 |                  |     |       |
| 2     |       |             | Draw the iso                                               | ometric   | projection of  | a rectangu   | lar prism of 6  | 0 30             | CO5 | L3    |
|       |       |             | x 80 x 20 mm thick surrounding a tetrahedron of sides      |           |                |              |                 |                  |     |       |
|       |       |             | 45mm such that the axes of the solids are collinear and at |           |                |              |                 | at               |     |       |
|       |       |             | least one of                                               | the edge  | es of both the | solids is pa | rallel to VP.   |                  |     |       |
| 3     |       |             | A sphere of                                                | diamete   | er 50 mm rest  | s centrally  | o top of a cub  | e 30             | CO5 | L3    |
|       |       |             | of sides 50                                                | mm. I     | Draw the ison  | netric proj  | jections of th  | e                |     |       |
|       |       |             | combination                                                | of solid  | ls.            |              |                 |                  |     |       |
| 4     |       |             | The frustum                                                | of a so   | quare pyramic  | d of base s  | ide 40mm, to    | p 30             | CO5 | L3    |
|       |       |             | face side 20                                               | mm and    | l height 60mr  | n rest on th | ne center of th | e                |     |       |
|       |       |             | square block                                               | c of side | 60mm and h     | eight 20mn   | n. The edges o  | of               |     |       |

|    | the pyramid are parallel to the top edges of the square<br>block. Draw the isometric projections of the combination of<br>solids                                                                                                                           |    |     |    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
| 5  | A rectangular pyramid of base 40mm x 25mm and height 50mm is placed centrally on a rectangular slab sides 100mm x 60mm and thickness 20mm. Draw the isometric projections of the combination.                                                              | 30 | CO5 | L3 |
| 6  | A frustum of cone base diameter 50mm, top diameter 25mm and height 50mm is placed centrally on the top face of a cylinder diameter 60mm and height 60mm. Draw the isometric projections of the combination.                                                | 30 | CO5 | L3 |
| 7  | A hemisphere diameter 50mm is resting on its curved<br>surface centrally on the top face of frustum of a rectangular<br>pyramid base 80mm x 60mm and top 60mm x 40mm,<br>height 55mm. Draw the isometric projections of the<br>combination.                | 30 | CO5 | L3 |
| 8  | A sphere of diameter 50 mm rests centrally o top of a cube<br>of sides 50 mm. Draw the isometric projections of the<br>combination of solids.                                                                                                              | 30 | CO5 | L3 |
| 9  | A hemisphere of 40 mm diameter is supported co-axially<br>on ht vertex of a cone of base dia. 60 mm and axis length<br>50mm. The flat circular face of the hemisphere is facing<br>upside. Draw the isometric projections of the combination<br>of solids. | 30 | CO5 | L3 |
| 10 | Draw the isometric projection of a rectangular prism of 60 x 80 x 20 mm thick surrounding a tetrahedron of sides 45mm such that the axes of the solids are collinear and at least one of the edges of both the solids is parallel to VP.                   | 30 | CO5 | L3 |

## F. EXAM PREPARATION

## 1. University Model Question Paper

| Cours | se:   | Engineering Graphics Month                                                     |                 |                |                 |             |         | / Year | May /  | 2018 |
|-------|-------|--------------------------------------------------------------------------------|-----------------|----------------|-----------------|-------------|---------|--------|--------|------|
| Crs C | Code: | 18EGDL15                                                                       | Sem:            | Ι              | Marks:          | 100         | Time:   |        | 180    |      |
|       |       |                                                                                |                 |                |                 |             |         |        | minute | es   |
| -     | Note  | Note: Answer ai                                                                | ny 3 questions, | each carry eq  | ual marks.      |             |         | Mark   | CO     | Leve |
|       |       |                                                                                |                 |                |                 |             |         | S      |        | 1    |
| 1     | а     | A point is lyin                                                                | g on HP, 20n    | nm behind V    | P and 25 mm     | n behind/in |         | 15     | CO3    | L3   |
|       |       | front/from RPP. Draw the projections and name the side view                    |                 |                |                 |             |         |        |        |      |
|       |       |                                                                                |                 |                |                 |             |         |        |        |      |
|       | b     | Draw the projections of a line AB 100mm long inclined at 45 <sup>°</sup> to VP |                 |                |                 | 15          | CO3     | L3     |        |      |
|       |       | and 30 $^{0}$ to HF                                                            | P. One end of   | the line is 2  | 0 mm above      | the HP and  | in the  |        |        |      |
|       |       | VP. Also deter                                                                 | mine the app    | arent length   | and inclination | ions        |         |        |        |      |
|       |       |                                                                                |                 | OR             |                 |             |         |        |        |      |
| 1     | а     | A regular hexa                                                                 | agonal lamina   | a of sides 30  | mm is lying     | in such a w | ay that | 30     | CO4    | L3   |
|       |       | one of its side                                                                | s touches bot   | h the referer  | nce planes. If  | the lamina  | makes   |        |        |      |
|       |       | $60^\circ$ with HP. I                                                          | Draw the pro    | jections of th | ne lamina.      |             |         |        |        |      |
|       |       |                                                                                |                 |                |                 |             |         |        |        |      |

| 2 | a | A pentagonal prism 25mm sides of base & 50mm axis length is suspended freely from a corner of its base. Draw the projections of the prism when the axis appears to be inclined to VP at $45^0$ | 40 | CO4 | L3 |
|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
|   |   |                                                                                                                                                                                                |    |     |    |
| 3 | а | A frustum of a pentagonal pyramid, smaller base sides 16mm and                                                                                                                                 | 30 | CO4 | L3 |
|   |   | bigger top face sides 32mm and height 40mm is resting on the HP on                                                                                                                             |    |     |    |
|   |   | its smaller base, with one of its base side parallel to the VP. Draw the                                                                                                                       |    |     |    |
|   |   | projections of the frustum and develop the lateral surface of it.                                                                                                                              |    |     |    |
|   |   | OR                                                                                                                                                                                             |    |     |    |
| 3 | b | A triangular pyramid base side 40mm and height 50mm is placed                                                                                                                                  | 30 | C04 | L3 |
|   |   | centrally on a slab side 80mm and 20mm thick. Draw the isometric                                                                                                                               |    |     |    |
|   |   | projections of the combinations                                                                                                                                                                |    |     |    |

## **2. SEE Important Questions**

| Cou    | irse: | Engineering Graphics Month      |                                                                    |                |                |                |           |      | May // | 2018 |
|--------|-------|---------------------------------|--------------------------------------------------------------------|----------------|----------------|----------------|-----------|------|--------|------|
| Crs    | Code: | 18EGDL15                        | Sem:                                                               | Ι              | Marks:         | 100            | Time:     |      | 180    |      |
|        | 1     |                                 |                                                                    |                |                |                |           | 1    | minute | es   |
|        | Note  | Answer any 3 q                  | uestions, each                                                     | carry equal m  | arks.          |                |           | -    | -      |      |
| Mo     | Qno.  | Important Que                   | estion                                                             |                |                |                |           | Mark | CO     | Year |
| dul    |       |                                 |                                                                    |                |                |                |           | S    |        |      |
| e<br>1 |       |                                 | 1 .                                                                | C ' ( D 1      |                |                |           | 10   | 002    | 2014 |
| 1      | a     | Draw all the t                  | three views of                                                     | of point P ly  | /ing 60mm      | below HP /(    | mm in     | 10   | CO3    | 2014 |
|        |       | it lies                         | ront of VP and 40mm from the RPP. Also state the quadrant in white |                |                |                |           |      |        |      |
|        | 9     | A point A is                    | 40mm in t                                                          | front of VP    | and is sit     | usted in the   | fourth    | 10   | CO3    | 2016 |
|        | a     | auadrant its s                  | hortest distar                                                     | ice from the   | intersection   | n of XY and    | X Y is    | 10   | 005    | 2010 |
|        |       | 45 mm . Draw                    | its projectio                                                      | ns. Also find  | d its distance | e from HP.     |           |      |        |      |
|        | а     | A point is 35r                  | A point is 35mm below HP. 15mm behind VP and 25mm behind /         |                |                |                |           |      |        |      |
|        |       | front/ from RI                  | front/ from RPP. Draw its projections and name the side view       |                |                |                |           |      |        |      |
| 1      | b     | line AB is 7                    | 75 mm long                                                         | . It's FV &    | & TV ma        | ke 45 0 and    | 1 60 0    | 15   | CO3    | 2013 |
|        |       | inclinations w                  | ith X-Y line                                                       | resp End A     | is 15 mm a     | bove Hp and    | l VT is   |      |        |      |
|        |       | 20 mm below                     | XY line. L                                                         | ine is in fir  | rst quadrant   | . Draw proje   | ections,  |      |        |      |
|        |       | find inclinatio                 | ns with Hp &                                                       | z VP. Also lo  | ocate HT.      |                |           |      |        |      |
|        | b     | Line AB 100                     | mm long                                                            | is 30 0 and    | 1 45 0 inc     | lined to Hp    | & VP      | 15   | CO3    | 2017 |
|        |       | respectively. I                 | End A is $10^{\circ}$                                              | nm above H     | Ip and it's V  | VT is 20 mm    | below     | r    |        |      |
|        |       | Hp Draw proj                    | jections of th                                                     | e line and it  | 's HT.         |                |           |      |        |      |
|        | h     | The top view                    | of a 75 mm                                                         | long line      | AB measure     | es 65mm wł     | nile the  | 30   | CO3    | 2016 |
|        |       | front view is :                 | 50mm .Its or                                                       | ne end Ais in  | n the HP an    | d 12mm in f    | Front of  | -    |        |      |
|        |       | the VP. Draw                    | the projection                                                     | ns of AB and   | d determine    | its inclinatio | ns with   |      |        |      |
|        |       | the HP and the                  | e VP                                                               |                |                |                |           |      |        |      |
| 1      |       | A top winner - f                | a aquera 1                                                         | aine of sid-   | 20 mm in -     | maaton ala :-  | o oide-   | 30   | CO3    | 2014 |
| 1      |       | A top view of $30$ mm v $20$ mm | a square lan                                                       | una or side of | SU IIIM 18 a   | rectangle 1s   | a sides   | 50   | COS    | 2014 |
|        |       | both HP and V                   | VP Draw the                                                        | front view     | s of the sou   | are lamina N   | What is   |      |        |      |
|        |       | the inclination                 | of the surface                                                     | ce of the lam  | ina with HI    | P and VP?      | 13 Hat 18 |      |        |      |
|        |       | ine mennunon                    | or the Sulta                                                       |                |                |                |           |      |        |      |
|        |       | A rectangular                   | lamina of sic                                                      | les 20mm x     | 30mm rests     | on HP on or    | e of its  | 30   | CO3    | 2014 |
|        |       | longer edges.                   | The lamina i                                                       | s tilted abou  | it the edge    | on which it r  | ests till | _    |        |      |

|   | its plane surface is inclined to HP at 45 $^{\circ}$ . The edge on which it rests is inclined at 30 $^{\circ}$ to VP. Draw the projections of the lamina.                                                                                                                                                                                                              |    |     |      |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|------|
|   | A rectangular lamina of $35\text{mm} \times 20\text{mm}$ rests on HP on one of its shorter edges. The lamina is rotated about the edge on which it rests till it appears as a square in the top view. The edge on which the lamina rests is inclined $30^{\circ}$ to VP. Draw its projections and find its inclination to HP.                                          | 30 | CO3 | 2015 |
|   | A rectangular lamina of sides 20mm x 25mm has an edge in HP and adjoining in VP, is tilted such the front view appears as a rectangle of 20mm x 15mm. The edge, which is in VP, is 30mm from the right profile plane. (a) Draw the top view, front view and the left profile view in this position. (b) Find its inclinations with the corresponding principal planes. | 30 | CO3 | 2016 |
| 2 | A hexagonal pyramid 25mm sides of base and 50mm axis length rests<br>on HP on one of its corners of the base such that the two base edges<br>containing the corner on which it rests make equal inclinations with<br>HP. Draw the projections of the pyramid when the axis of the pyramid<br>is inclined to HP at 40° and to VP at 30°.                                | 30 | CO3 | 2015 |
|   | A square pyramid 35mm sides of base and 60mm axis length is suspended freely from a corner of its base. Draw the projections of the pyramid when the axis appears to be inclined to VP at $45^{\circ}$                                                                                                                                                                 | 30 | CO3 | 2016 |
|   | A hexagonal pyramid 25mm sides of base and 50mm axis length is suspended freely from a corner of its base. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°.                                                                                                                                                                      | 30 | CO3 | 2015 |
|   | A pentagonal pyramid 25mm sides of base and 50mm axis length rests<br>on HP on one of its slant edges. Draw the projections of the pyramid<br>when the axis is inclined to VP at $45^{\circ}$ .                                                                                                                                                                        | 30 | CO3 | 2017 |
|   | A pentagonal pyramid 25mm sides of base and 50mm axis length rests<br>on HP on one of its slant triangular faces. Draw the projections of the<br>pyramid when the axis appears to be inclined to VP at 45°.                                                                                                                                                            | 30 | CO3 | 2017 |
|   | A cone of 50mm base diameter and 60mm axis length rests on HP on one of its generators. Draw the projections when the axis is inclined to VP at $30^{\circ}$ .                                                                                                                                                                                                         | 30 | CO3 | 2014 |
| 3 | A square pyramid base 40 mm side and axis 65 mm ling has its base<br>on HP and all the edges of the base are equally inclined to V P. It is cut<br>to with an inclined section plane so as the truncated surface at 45° to<br>its axis, bisection it. Draw the development of the truncated pyramid.                                                                   | 30 | CO3 | 2015 |
|   | A cube of sides 40mm is resting on HP with its base on HP such that<br>one of its vertical faces is inclined at 30° to the VP. It I cut by a<br>section plane perpendicular to VP, inclined to HP at an angle 45° and                                                                                                                                                  | 30 | CO3 | 2015 |

|   | passes through the midpoint of the axis. Draw the development of the lower lateral surface of the cube.                                                                                                                                                                                                                                                                                                               |    |     |      |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|------|
|   | A rectangular prism of base size $25 \text{mm} \times 40 \text{ mm}$ and axis length $65 \text{mm}$ is resting on H P on its base with the longer side of base inclined at $30^{\circ}$ to VP. It is cut by a plane inclined at $40^{\circ}$ to HP and perpendicular to VP and passes through the extreme left corner of base. Draw the development of the lateral surface of the remaining portion of the the prism. | 30 | CO3 | 2016 |
| 4 | A cube of side 40mm is resting centrally on hexagonal prism<br>base side 40mm and height 50mm, such that one of the base sides of<br>the cube is parallel to one of the sides of the top face of the prism.<br>Draw the isometric projections of the combination of solids.                                                                                                                                           | 30 | CO3 | 2015 |
|   | An equilateral triangular prism base side 30mm and length 70mm is<br>resting on its rectangular face on top of a square slab side 70mm and<br>25mm thick. Draw the isometric projections of the combination of<br>solids                                                                                                                                                                                              | 30 | CO3 | 2015 |
|   | A cone of base diameter 50mm and height 50mm is placed<br>centrally on an equilateral triangular prism of side 100mm and 20mm<br>thick. Draw the isometric projections of the combination of solids.                                                                                                                                                                                                                  | 30 | CO3 | 2016 |
|   | square prism side 40mm and height 70mm has a full depth co-axial square hole side 20mm, such that edges of both the squares are parallel. Draw the isometric projection of the hollow prism.                                                                                                                                                                                                                          | 30 | CO3 | 2016 |
|   | Two rectangular plates are placed one above the other co-<br>axially with dimensions (lxbxh) 100mmx60mmx20mm and<br>100mmx40mmx20mm such that longer edges are parallel. Draw the<br>isometric projections of the combination of solids.                                                                                                                                                                              | 30 | CO3 | 2017 |
|   | A triangular pyramid base side 40mm and height 50mm is<br>placed centrally on a square slab side 80mm and 20mm thick. Draw<br>the isometric projections of the combination of solids.                                                                                                                                                                                                                                 | 30 | CO3 | 2014 |